Dr. Jürgen Dölz

Research Interests

  • Numerical Solution of PDE
  • Fast Treatment of non-local Operators
  • Uncertainty Quantification of PDE with Random Input Data
  • Isogeometric Analysis
  • Numerical Methods for Maxwell's Equations

Contact information


Dolivostraße 15

D-64293 Darmstadt



+49 6151 16 - 24379


+49 6151 16 - 24404




doelz (at) gsc.tu...


I am currently an Early Postdoc.Mobility fellow from the Swiss National Science Foundation and funded by project 174987.


  1. J. Dölz, S. Kurz, S. Schöps and F. Wolf. A Numerical Comparison of an Isogeometric and a Classical Higher-Order Approach to the Electric Field Integral Equation. arXiv:1807.03628.
  2. J. Dölz, S. Kurz, S. Schöps and F. Wolf. Isogeometric Boundary Elements in Electromagnetism: Rigorous Analysis, Fast Methods, and Examples. arXiv:1807.03097.
  3. A. Buffa, J. Dölz, S. Kurz, S. Schöps, R. Vázques and F. Wolf. Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis. arXiv:1806.01062.
  4. J. Dölz, H. Harbrecht and M.D. Multerer. On the best approximation of the hierarchical matrix product.  arXiv:1805.08998.
  5. J. Dölz and T. Gerig, M. Lüthi, H. Harbrecht and T. Vetter. Efficient computation of low-rank Gaussian process models for surface and image registration. Preprint 2017-01, Fachbereich Mathematik, Universität Basel, Switzerland, 2017.


  1. J. Dölz and H. Harbrecht. Hierarchical matrix approximation for the uncertainty quantification of potentials on random domains. J. Comput. Phys., 371:506-527, 2018.
  2. J. Dölz, H. Harbrecht, S. Kurz, S. Schöps, and F. Wolf. A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems. Comput. Methods Appl. Mech. Engrg., 330:83-101, 2018.
  3. J. Dölz, H. Harbrecht, and M. Peters. H-matrix based second moment analysis for rough random fields and finite element discretizations. SIAM J. Sci. Comput., 39(4):B618-B639, 2017.
  4. J. Dölz, H. Harbrecht, and C. Schwab. Covariance regularity and H-matrix approximation for rough random fields. Numer. Math., 135(4):1045-1071, 2017.
  5. J. Dölz, H. Harbrecht, and M. Peters. An interpolation-based fast multipole method for higher order boundary elements on parametric surfaces. Int. J. Numer. Meth. Eng., 108(13):1705-1728, 2016.
  6. J. Dölz, H. Harbrecht, and M. Peters. H-matrix accelerated second moment analysis for potentials with rough correlation. J. Sci. Comput., 65(1):387-410, 2015.


J. Dölz. Hierarchical matrix techniques for partial differential equations with random input data. 2017, Doctoral Thesis, University of Basel, Faculty of Science.

Teaching (Assistance)

  • FS17: Seminar: Methoden des Computer Aided Designs (at University of Basel).
  • HS16: Numerik der Differentialgleichungen (at University of Basel).
  • FS16: Nichtkonforme und gemischte Finite-Element-Methoden (at University of Basel).
  • HS15: Numerik der partiellen Differentialgleichungen (at University of Basel).
  • FS15: Einführung in die Numerik (at University of Basel).
  • HS14: Numerik der Differentialgleichungen (at University of Basel).
  • FS14: Praktikum II (at University of Basel).
  • HS13: Praktikum I (at University of Basel).
  • FS13: Lineare Algebra II (at University of Basel).
  • HS12: Reelle Analysis (at University of Basel).
  • FS12: Mathematische Methoden 4 (at University of Basel).
  • HS11: Mathematische Methoden 3 (at University of Basel).


Technische Universität Darmstadt

Graduate School CE
Dolivostraße 15
D-64293 Darmstadt

Phone+49 6151/16-24401    or
Fax+49 6151/16-24404

to assistants' office

A A A | Print Print | Impressum Impressum | Sitemap Sitemap | Search Search | Contact Contact
zum Seitenanfangzum Seitenanfang