Application of the ACA to problems in electromagnetic scattering

Dr. Lucy Weggler, Biotronik SE & Co KG, Berlin

7 May 2018, 16:15–17:45; Location: S2|17-103

Because of quadratic memory requirements classical boundary element realisations are applicable only for a rather moderate number N of boundary elements. A possible solution to this problem is to take advantage of the good approximation properties of the boundary element matrices. One established appoximation scheme is called the adaptive cross approximation (ACA) [1, 2].

In this talk the author’s ideas of how to apply the ACA to boundary element formuations of the harmonic Maxwell equations are explained and illustrated by numerical experiments. The principal topics are

  • ACA in the context of high order boundary element methods [3, 4, 5].
  • ACA in the context of multi-frequency problems.


[1] Bebendorf, M., Approximation of boundary element matrices., Numerische Mathematik, 2000.

[2] Kurz, S., Rain, O.,Rjasanow, S., The adaptive cross approximation technique for the 3D boundary element method., IEEE Transaction on Magnetics, Vol. 38(2):421-424, 2002.

[3] L. Weggler, High Order Boundary Element Methods, Dissertation, Saarland University, 2011.

[4] Rjasanow, S., Weggler, L., ACA accelerated high order BEM for Maxwell problems, Comput. Mech, Vol. 51:431-441, 2013.

[5] Rjasanow, S., Weggler, L., Matrix valued adaptive cross approximation, Math. Meth. Appl. Sci., Vol. 40:2522-2531, 2017.

Category: CE Seminar


Technische Universität Darmstadt

Graduate School CE
Dolivostraße 15
D-64293 Darmstadt

Phone+49 6151/16-24401    or
Fax+49 6151/16-24404

to assistants' office

Please use our contact form, if you have any questions or feedback.

Read the latest issue of the GSC Newsletter

A A A | Print Print | Impressum Impressum | Sitemap Sitemap | Search Search | Contact Contact
zum Seitenanfangzum Seitenanfang