2011-07-01

Parametrische Modellordnungsreduktion für die Finite-Elemente-Approximation linearer zeitinvarianter Systeme

Dr.-Ing. Ortwin Farle, Universität des Saarlandes

7 Jul 2011, 14:00; Location: S2|17-114

Die Diskretisierung linearer zeitinvarianter Systeme mittels finiter Elemente (FE) führt auf große, dünnbesetzte lineare Gleichungssysteme, deren Dimension typischerweise in der Größenordnung von Hunderttausend bis einigen Millionen liegt. Während ihre Lösung für eine einzelne Frequenz beim heutigen Stand der Technik kein Problem mehr bereitet, stellt die breitbandige Charakterisierung des zugrundeliegenden Systems noch immer eine erhebliche Herausforderung dar, weil hierfür das FE-Modell in einer Vielzahl von Frequenzpunkten ausgewertet werden muss. Zur effizienten Behandlung solcher über der Frequenz parametrierten Gleichungssysteme wurden Methoden der Ordnungsreduktion entwickelt, die das hochdimensionale Originalmodell auf einen niedrigdimensionalen Unterraum wohlgewählter globaler Ansatzfunktionen projizieren. Dies reduziert die Größe des Modells auf einige Dutzend bis wenige Hundert und ermöglicht äußerst kurze Rechenzeiten, ohne auf nennenswerte Genauigkeitseinbußen zu führen. In jüngerer Zeit wurden Verfahren entwickelt, die neben der Frequenz weitere Parameter - insbesondere Materialeigenschaften und Geometrie - berücksichtigen. Diese Verfahren werden unter dem Begriff der parametrischen Modellordnungsreduktion zusammengefasst.

Der erste Teil des Vortrags stellt zunächst die Grundlagen von auf Projektion basierender Ordnungsreduktion vor und geht danach auf ein vom Vortragenden entwickeltes parametrisches Ordnungsreduktionsverfahren ein, das lediglich eine einzige Faktorisierung der hochdimensionalen Systemmatrix benötigt. Der zweite Teil des Vortrags behandelt die Ordnungsreduktion variabler Geometrie. Dieser Problemklasse kommt besonders große praktische Relevanz zu. Allerdings bringt sie die Schwierigkeit mit sich, aufgrund der Unterteilung des Feldgebiets in finite Elemente zu einer impliziten bzw. nicht-affinen Parametrierung des Systems zu führen. Hier wird ein neues Verfahren zur Berücksichtigung geometrischer Parameter vorgestellt und seine Effizienz durch numerische Vergleiche zu bestehenden Ansätzen demonstriert. Gegenstand des letzten Teils des Vortrags ist eine Erweiterung des bisher vorgestellten Ordnungsreduktionsverfahrens zur Bewahrung der Passivität des Originalmodells unter Berücksichtigung von Geometrieparametern.

Category: CE Seminar

Contact

Technische Universität Darmstadt

Graduate School CE
Dolivostraße 15
D-64293 Darmstadt

Phone+49 6151/16-24401
Fax -24404
OfficeS4|10-322

to assistants' office

Open BSc/MSc Theses

Show a list of open BSc/MSc topics at GSC CE.

 Print |  Impressum |  Sitemap |  Search |  Contact |  Privacy Policy
zum Seitenanfangzum Seitenanfang